Gene conversion variations generate structurally distinct pilin polypeptides in Neisseria gonorrhoeae
نویسندگان
چکیده
Pilus+ to pilus- phenotype change occurs in Neisseria gonorrhoeae through gene conversion of the gonococcus' complete, expressed pilin gene by nucleotides homologous to the pilS1 copy 5 partial pilin gene; assembly missense pilin is synthesized but pili are not. Reversion to pilus+ occurs by a subsequent recombinational event that replaces the complete pilin gene's pilS1 copy 5-like sequence with nucleotides from a different partial gene to effect expression of an orthodox (i.e., pilus producing) pilin. Sibling pilus+ revertants of common parentage can carry different sequences in their expressed pilin genes because they have undergone nonidentical gene conversion events such as recombinations with sequences from different partial genes, or recombinations with different length nucleotide stretches of the same partial gene; either can yield structurally and antigenically variant pilin polypeptides.
منابع مشابه
Transcription of a cis-acting, Noncoding, Small RNA Is Required for Pilin Antigenic Variation in Neisseria gonorrhoeae
The strict human pathogen Neisseria gonorrhoeae can utilize homologous recombination to generate antigenic variability in targets of immune surveillance. To evade the host immune response, N. gonorrhoeae promotes high frequency gene conversion events between many silent pilin copies and the expressed pilin locus (pilE), resulting in the production of variant pilin proteins. Previously, we ident...
متن کاملRelease of soluble pilin antigen coupled with gene conversion in Neisseria gonorrhoeae.
Gene conversion appears to be the frequent mechanism in Neisseria gonorrhoeae that leads to an altered expression of pilin, the subunit component of the pili. In this process segments of variable sequence information, the minicassettes, are transferred from silent storage loci into an expression locus. As a putative consequence of the rearrangement in the pilE gene, gonococci can enter a differ...
متن کاملCharacterization of the recD gene of Neisseria gonorrhoeae MS11 and the effect of recD inactivation on pilin variation and DNA transformation.
Pilin antigenic variation in Neisseria gonorrhoeae may result following intrachromosomal recombination between homologous pil genes. Despite extensive study, recA is the only previously characterized gene known to be involved in this process. In this study, the gonococcal recD gene, encoding one subunit of the putative RecBCD holoenzyme, was characterized and its role in pilin variation assesse...
متن کاملControl of Neisseria gonorrhoeae pilin gene expression by environmental factors: involvement of the pilA/pilB regulatory genes.
The control of the expression of the pilin gene (pilE) in Neisseria gonorrhoeae under a wide variety of growth conditions has been studied. The expression of pilE was measured using transcriptional fusions between pilE and the gene encoding chloramphenicol acetyltransferase (CAT), and the level of pilin production was measured by Western blot analysis. Many of the conditions tested affected bot...
متن کاملCharacterization of a class II pilin expression locus from Neisseria meningitidis: evidence for increased diversity among pilin genes in pathogenic Neisseria species.
Strains of Neisseria meningitidis elaborate one of two classes of pili. Meningococcal class I pili have many features in common with pili produced by N. gonorrhoeae, including the ability to bind monoclonal antibody SM1 and a common gene and protein structure consisting of conserved, semivariable, and hypervariable regions. Class II pili are SM1 nonreactive and display smaller subunit molecular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 165 شماره
صفحات -
تاریخ انتشار 1987